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VVous êtes vous déjà posé 
la question comment 
l’information est-elle
protégée? Personne n’est 
vraiment sûr de cette 
protection. Aucune des
méthodes habituelles de 
protection n’est garantie,
tout ce qu’on peut dire
c’est que nous ne pouvons
pas les casser et on espère
que d’autres ne le peuvent 
pas non plus. La sécurité à 
long terme repose sur des 
expériences comme celles 
décrites ici, menées dans 
le cadre du Laboratoire de
cryptologie algorithmique
ded  l’EPFL.

EEEver wondered how 
information is protected? 
No one knows for sure. 
None of the currently used
methods can be guaranteed
to off er security. All we can
say is that we cannot break 
them. We hope that others 
cannot do so either. Long 
term security estimates rely 
on experiments. Some of 
those carried out at EPFL’s
Laboratory for Cryptologic 
AlAA gogg rithms are described.

INTRODUCTION

Th at 15 equals 3 times 5 is not hard to figure out.
Th at 21039-1 equals 5080711 times

55853 66661 99362 91260 74920 46583 15944 96864 65270 18488 63764 80100 52346 31985 32883 74753

times a 227-digit number is less obvious. Everyone with enough time (and patience) 
on their hands can verify it. But how were those numbers found? And why is it 
interesting?

Finding the factorizations of 15 or 21039-1 are examples of the integer factoriza-
tion problem. It has been studied for ages, mostly for fun1.

It was believed to be hard, and useless. Th e latter changed in 1976 when Ron 
Rivest, Adi Shamir, and Len Adleman showed an application. If it is hard, then 
everyone can communicate securely with anyone else. Th is now famous RSA cryp-
tosystem led not only to headaches for national security agencies. It also put integer 
factorization in the center of attention. After more than three decades of scrutiny 
the results have been disappointing – and reassuring: integer factorization is still 
believed to be hard and RSA is still considered secure. And there is still no proof 
that the problem is hard either2.

Th is is not the place to explain how the hardness of factoring can be used to 
protect information. We describe our experiments to find out how large an RSA 
modulus has to be to get enough protection. One of our experiments led to the 
factorization of 21039-1.

Only a few alternatives to RSA have been found. A popular one is ECC (El-
liptic Curve Cryptography). It relies on the hardness of ECDLP (elliptic curve discrete 
logarithm problem). As in integer factorization, there is no hardness proof. But the 
problem looks even harder: secure ECC-parameters are much smaller than secure 
RSA-parameters.

Integer factorization and ECDLP experiments can be fully parallelized. Both 
require hundreds or even thousands of core years. For the rest they are entirely dif-
ferent. Integer factorization is a multi-step process. It profits from large memories 
and needs tightly coupled processors in one of its steps. Large clusters of servers 
are commonly used. For ECDLP almost anything goes, as long as there is a lot of 
computing power. It hardly needs memory and no fast network. It suffices to have 
a large disk to store the data trickling in from the contributors.

Our experiments were conducted on clusters at EPFL. For integer factoring 
this included the server clusters at LACAL (Laboratory for Cryptologic Algorithms) 
along with various other clusters (Callisto, Mizar, Pleiades) and the campus greedy 
network. For ECDLP we used LACAL’s cluster of more than 200 PlayStation 3 
game consoles. We also describe some other cryptographic experiments on the 
PlayStation cluster.

1 See for instance Hunting big game in the theory of numbers, a September 1932 Scripta Mathematica paper by Derrick N. Lehmer, 
cf. ed-thelen.org/comp-hist/Lehmer-NS03.html.

2 On the contrary, it is easy on a quantum computer. Such computers do not exist yet, so this is not a practical threat.
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NUMBER CRUNCHING ON SERVER CLUSTERS

INTEGER FACTORIZATION
What can be hard about factoring? Just try to divide by 2, 

3, 4, 5, 6, … . Or, faster, try only primes and stop at the target’s 

square root. Th at works, except that it is slow. For 20-digit 
integers one may have to try almost half a billion primes. Th at 
is doable. For 100-digit numbers there may be more than 
1045 primes to try, which is undoable. Nevertheless, 100-digit 
integers are easy to factor. How does that work?

APPROXIMATE FACTORING RUN TIMES

To find the smallest factor p of a composite n, trial and error, Pollard’s rho, ECM, SNFS, and NFS require, 
approximately,

p
ln p

, √ p, e 2√ ln p ln ln p , e 1.56(ln n)1/3 (ln ln n) , and e2/3 1.92(ln n)1/3 (ln ln n)2/3

operations on integers at most n, respectively. SNFS applies only to special n.

FACTORING USING RELATIONS

Let 143 be the number to be factored. Consider 172=3+2×143. We write it as
172 ≡ 3 mod 143

to express that the diff erence between 172 and 3 is an integer multiple of 143. We say that 172 and 3 are congru-
ent modulo 143.
An integer v > √1–4–3– is a relation if v2 ≡ u mod 143 and u’ s prime factors are at most 5: we say that u is 5-smooth. 
Th us, 17 is a relation. Similarly, 19 is a relation because

192 ≡ 3×52 mod 143.
But 18 is not, because 182 ≡ 38 mod 143 and 38 has a prime factor 19 > 5. 
Relations can be combined by multiplying them: the left hand side by the left hand side, and the right hand 

side by the right hand side. Th e result is again a relation. For instance, combining 17 and 19 produces
172×192 ≡ 3×3×52 mod 143.

We seek a combination where both sides are squares. Th e left hand side is a product of squares and thus a 
square. For the right hand side it takes some fiddling around (linear algebra, done in the matrix step). For the 
example it turns out to be a square right away:

(17×19)2 ≡ (3×5)2 mod 143.
A square on both sides may be useful to factor:143 evenly divides

(17×19)2–(3×5)2=3232–152=(323–15)×(323+15)=308×338,
and therefore

143 = gcd(143,308) × gcd(143,338)=11 × 13.
Here we use the Euclidean algorithm to easily calculate the greatest common divisors.

GENERATING RSA MODULI

An RSA modulus is a publicly known integer that is the product of two prime numbers of about the same 
size. Security provided by it relies on the secrecy of its prime factors. RSA moduli can be generated quickly 
because of two classical results in number theory:

Th ere are plenty of primes. About 1 out of every 2.3D random D-digit integers is prime. Th is is the Prime 
Number Th eorem. If the random numbers are odd, the chance doubles!

Primes can quickly be recognized. If p is prime then a p – a is a multiple of p. Th is is Fermat’s little theorem. 
A generalization is used to recognize primes.

Multiplication is easy. Twice using the above, two D-digit primes can efficiently be found. Th eir product 
can be calculated and made public. It is an RSA modulus of about 2D digits. Th e two primes should be 
kept secret by the owner of the RSA modulus.

If factoring is hard and D big enough, only the owner knows the factors of a public RSA modulus. With 
a good random number generator, diff erent runs lead to diff erent primes and diff erent RSA moduli.

Th ere are two types of factoring methods. Th e first type 
finds smaller factors faster. Examples are the above trial and 
error method, Pollard’s rho method, and the Elliptic Curve 
Method (ECM, cf. Section SLICING AND DICING ON THE SPU). 
For RSA moduli it is better to use NFS (Number Field Sieve), 
the fastest method of the other type. SNFS, a faster version 
of NFS, can be used for special numbers. Th e number 21039-1 
is special. RSA moduli are not.

ECM (ecm.gforge.inria.fr/) was installed in the spring of 
2007 on EPFL clusters by two bachelor students, Aniruddha 
Bhargava and Sylvain Pelissier. Aniruddha is still managing 
it. More than 280 special numbers have been factored, as 
part of a century old factoring project (homes.cerias.purdue.
edu/~ssw/cun/). 

NFS on a desktop factors any 100-digit integer in a few 
hours. So, 100-digit integers are no good for RSA. Factoring 

Number crunching on clusters at EPFL
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200-digit integers with NFS is challenging. Th e first published 
200-digit eff ort ran from Christmas 2003 to May 2005. It 
would have taken 75 years on a single core 2.2GHz Opteron. 
On that processor 300-digit numbers would take a million 
years. At this point that is out of reach for us. Currently, 
309-digit RSA moduli are commonly used.

Th e two main steps of NFS are sieving and the matrix. 
Sieving is used to find relations: congruences that can be com-
bined to produce a factorization. Sieving can be parallelized 
over any number of independent processors. Th e relations 
are combined in the matrix step. It needs all relations and 
is best run on tightly coupled processors. Below these steps 
are described in more detail.

SIEVING
Relations in factoring use smooth values, integers with 

only small prime factors. Smooth integers are found quickly 
with a sieve: instead of checking each integer against all small 
primes, all values in the sieve are tested simultaneously. In 
theory this works great. In practice it is not so easy.

Th e sieve is too large to fit in memory: for 21039-1 the 
SNFS-sieve would have consisted of 1018 elements. Th erefore 
the sieve is broken into pieces. Line sieving used to be the 
favorite approach. Lattice sieving with special q is faster and, 
right now, more popular. In both cases independent proces-
sors can process the smaller pieces. Because there are many 

SIEVING IN NFS AND SNFS

Let A and B be positive integers and let the sieve S be the rectangle [ -A ,A ]×[1,B ]  in Z 2 consisting of 
#S=(2A+1)B  pairs of integers. Relations are pairs s in S for which f(s) and g(s) are smooth, where f and g 
are certain nicely behaving integer functions on Z 2: if p divides f ( s 1,0)  for a pair s 1,0=(r f (p ) ,1) , then p also 
divides f ( s i , j  )  for all pairs s i , j = ( i r f  (p )+jp, i )  where i and j are integers. Th e same holds for g, but there is 
no relation between rf and rg. All s i , j in S are found by inspecting for each i with 1 ≤ i ≤ B the integers j for 
which | i r f  (p )+ jp |  ≤  A . After sieving twice with all small primes (namely, for f(s) and for g(s)), the relations 
can be collected. Th e small primes are, approximately, those less than √#S—.

LINE SIEVING

Th e sieve S can be split into smaller pieces [-A ,A]×[ i]  for i=1,2,…,B without changing the sieving strategy. 
If 2A+1 sieve-locations still do not fit in memory, each line may be further partitioned.

LATTICE SIEVING WITH SPECIAL q

Given a prime q, let Lq be the lattice defined as the integer linear combinations of the vectors (q,0) and 
(r f(q ) ,1)  in Z 2, and let Sq be a subset of Lq. It follows that q divides f(s) for s in Sq. Th e lattice Lp may in-
tersect with Sq. Th e intersection points are quickly determined using a reduced basis for the intersection of 
Lq and Lp. In Sq relations are found by doing this for all small p.

Th is lattice sieving touches only the pairs in Sq that are hit by p. Line sieving would for each p inspect 
each line of Sq. Th at would be too slow given how many primes q need to be processed and because the larger 
primes p hit a vanishingly small fraction of the lines of Sq.

Th e same relation may be found for diff erent primes q. All duplicates need to be removed.

small pieces, sieving can be parallelized over any number of 
processors. Cache misses cause trouble too. Th ey cannot be 
avoided, but their impact can be lessened.

We give three sieving examples: the 200-digit record NFS 
factorization of RSA-200, the record SNFS factorization of 
21039-1, and the current 232-digit NFS factoring eff ort for 
RSA-768.
RSA-200. Lattice sieving with most special q primes between 

300 million and 1.1 billion was used, along with some 
line sieving, for small primes up to 300 million. It was 
done at various locations in Germany and the Nether-
lands, resulting in 2.3 billion unique relations. It would 
have taken 55 years on a single core 2.2 GHz Opteron 
with 1 GB RAM.

21039-1. Th e 40 million primes between 123 million and 911 
million were used as special q primes. Per special q smooth-
ness of twice 2 billion integers was tested using 16 million 
primes less than 300 million. Th is takes two and a half 
minutes on a single core of a 2.2GHz Opteron with 1GB 
RAM. For all special q primes it would have taken a century 
on a dual core 2.2GHz Opteron. It took half a year on 
clusters in Germany, Japan, and Switzerland. It was the 
first large scale factoring eff ort in which EPFL participated, 

contributing 8.3% of the sieving eff ort. More than 16 bil-
lion relations were collected including duplicates, resulting 
in almost 14 billion unique relations.

RSA-768. For this as-yet unfinished NFS factorization, half 
a billion special q primes in the range from 110 million 
to 11 billion sufficed. Per special q smoothness of twice 
2 billion integers was tested using 55 million primes less 
than 1.1 billion. On average processing a single special q 
took a bit more than 2 minutes on a 2.2GHz Opteron 
core. Overall it would have taken about a millennium 
on a dual core 2.2GHz Opteron with 2GB RAM per 
core. It was done over a period of 1.5 years on clusters in 
Australia (0.43%), France (37.97%), Germany (8.14%), 
Japan (15.01%), Switzerland (34.33%), the Netherlands 
(3.44%), and the United Kingdom (0.69%).

 Clusters at LACAL contributed 28.97% of the sieving ef-
fort, i.e., a sustained performance of about 200 dual core 
processors over a period of 1.5 years. Machines on EPFL’s 
greedy campus network did not have enough RAM to 
contribute a lot. Nevertheless, they were responsible 
for 0.82%. More than 64 billion relations were found, 
resulting in 47 billion unique relations. 

Number crunching on clusters at EPFL
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 Sieving for 309-digit RSA moduli as used in practice is 
about a thousand times harder.

THE MATRIX STEP
Each smooth value in a relation is the product of a 

number of small primes. For each smooth value, the number 
of times each small prime occurs in it, is the small prime’s 
exponent - zero if the small prime does not occur. For each 
relation we get a vector of exponents. Th e number of expo-
nents is the total number of small primes, and is the dimen-
sion of the vector.

In each smooth value each small prime can occur, but 
only very few small primes do occur. Th us, for each vector 
all but a few entries are zero, i.e., the vectors are sparse. Using 
simple sparse vector encoding tricks, the storage required 
for all vectors is therefore practically linear in the number 
of relations.

Th e set of relations thus leads to a collection of sparse 
vectors. In the matrix step subsets of the set of relations are 
determined such that the vectors corresponding to a subset 
add up, component-wise, to a vector with all even entries. 
Th is is a well known linear algebra problem. A solution ex-
ists if the number of relations exceeds the dimension. Th at 
condition is easy to check. In the examples above, however, 
there are way more unique relations than small primes. 
Th at is because large primes are allowed in smooth values. 
Th e dimension of the vectors – and the number of relations 
required – is therefore much larger than the number of small 
primes. It also makes it harder to see if enough relations have 
been found, i.e., if a solution exists. It is still easy, though. 

But existence of a solution is not enough. To be able to fac-
tor, solutions have to be found. Th at is a more complicated 
but well-studied problem.

Th e classical solution is Gaussian elimination. It processes 
the vectors one-by-one looking for a non-zero pivot, elimi-
nating its occurrence in subsequent vectors. Although the 
original vectors require linear storage, it becomes quadratic 
due to fill-in. As a result the run time is cubic in the dimen-
sion, despite the original sparsity. For application in factoring, 
with dimensions of many millions, Gaussian elimination is 
too memory and time consuming.

Newer methods take advantage of the sparsity, with stor-
age linear and run time quadratic in the dimension: block-
Lanczos and block-Wiedemann. Th ey look alike, as they both 
consist of a long iteration of matrix×vector multiplications. 
But they are very diff erent. Lanczos is a geometric method 
that iteratively builds a sequence of orthogonal subspaces. 
After each iteration a central node has to gather all current 
information, to decide how to proceed for the next one. 
Th is frequent need for synchronization and non-trivial data 
exchange between all participating nodes limits the way 
block-Lanczos can be parallelized.

Block-Wiedemann is an algebraic method. It builds a 
sequence satisfying a linear recurrence relation, using an 
iteration of matrix×vector multiplications. Th e minimal poly-
nomial of the recurrence, determined with the Berlekamp-
Massey algorithm, is used to derive solutions using another 
iteration of matrix×vector multiplications.

Th e central step, i.e., Berlekamp-Massey, is the fastest 
one, but it requires lots of memory. Th e two iterations are the 

Number crunching on clusters at EPFL

RELATIONS AND VECTORS

Looking for 7-smooth values while trying to factor 1457, we could have found the following five rela-
tions

412 ≡ 224 mod 1457=25×30×50×71,
432 ≡ 392 mod 1457=23×30×50×72,
582 ≡ 450 mod 1457=21×32×52×70,
592 ≡ 567 mod 1457=20×34×50×71,
602 ≡ 686 mod 1457=21×30×50×73.

Since there are 4 primes that are at most 7, each relation leads to a 4-dimensional vector of exponents:

41:  [5,0,0,1],
43:  [3,0,0,2],
58:  [1,2,2,0],
59:  [0,4,0,1],
60:  [1,0,0,3].

Component-wise adding the first, second, and fourth vector results in an all even vector:

[5,0,0,1]+[3,0,0,2]+[0,4,0,1]=[8,4,0,4].

Th is corresponds to the combination

(41×43×59)2 ≡ (24×32×50×72)2 mod 1457.

With 41×43×59 ≡ 570 mod 1457 and 24×32×72 ≡ 1228 mod 1457 this leads to

1457= gcd (1457,570-1228) × gcd (1457,570+1228)=47×31.

Combination of the relations 41 and 60 produces the same factorization, but combination of 43 and 58 leads 
to 1457=1×1457. Th ere is always a chance of bad luck. Sometimes many combinations have to be tried.
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most compute-intensive. But they can be done independently 
by a small (say, 4, 8, 12, or 16) number of parties, so the brunt 
of the calculation can be divided among a small number 
of independent clusters. Inter-cluster communication is 
required only before and after the central step. Despite the 
cumbersome central step which is done at a single location, 
block-Wiedemann is now more popular than block-Lanczos: 
it is used in all current record factorizations.

RSA-200. After preprocessing, the relations resulted in 
64 million vectors with, on average, 172 non-zeros per 
vector. Th e matrix step was done at BSI, Germany, in 
3 months on a single cluster of 80 single core 2.2 GHz 
Opterons connected via a Gigabit network.

21039-1. Th e set of relations was squeezed down to 67 mil-
lion vectors with 143 non-zeros on average. Th ey could 
have been dealt with as the RSA-200 matrix, but it was 
decided to use a more challenging approach: this became 
the first factorization for which the matrix step was 
processed in 4 disjoint streams on clusters here at EPFL 
and at NTT in Japan.

 At EPFL, a cluster of 96 2.66 GHz Dual Core2Duo proc-
essors (with 4 cores per node, sharing a single network 
connection) was used for 2 streams. At NTT 2 streams 
were processed on a cluster of 110 dual core 3GHz 
Pentium D processors in a torus topology with Gigabit 
ethernet. Under ideal circumstances all 4 streams could 
have been processed in 59 days on the Pentium cluster, 
i.e., 35 Pentium D core years. On 32 nodes of the Dual 
Core2Duo cluster it would have taken 162 days, i.e., 56 
Dual Core2Duo core years. Th is latter performance is 
relatively poor due to the shared network connection. 

 Th e Berlekamp-Massey step was done on a 72 core cluster 
at EPFL. It took 128 GB of memory and less than 7 hours 
wall-clock time. On 64 cores at the University of Bonn it 
took 8 hours. Intermediate data transfer between NTT 
and EPFL took half a day over the Internet. Altogether 
the matrix step took 69 days.

RSA-768. Here the matrix is much larger: 193 million vec-
tors with 144 non-zeros on average. Th e calculation is on-
going on eight clusters here at EPFL (3), at INRIA/Nancy 
in France (3), and at NTT in Japan (2). Th e central step 
will be done on a cluster at EPFL. It would take four to 
five months on 36 nodes of LACAL’s 12-cores-per-node 
2.2 GHz AMD cluster with Infiniband network. On 
the NTT-cluster (as above), it would take about a year 
and a half. Combined (where INRIA uses grid5000, cf. 
www.grid5000.fr), we hope to be able to do it in about 
3 months. 

 For 309-digit RSA moduli as used in practice the matrix 
step is about a thousand times harder. A block-Lanczos 
eff ort may be carried out in the Netherlands on the 
Huygens computer, cf. huygens.supercomputer.nl.

NUMBER CRUNCHING ON PLAYSTATION 3 
GAME CONSOLES

THE CELL PROCESSOR
Th e Cell processor is the main processor of the Sony 

PlayStation 3 (PS3) game console. IBM’s roadrunner, 

currently the largest 
computer, contains al-
most 13 thousand Cell 
processors – not to play 
games, but because they 
are powerful general 
purpose processors.On 
current PS3s the Cell 
can be accessed using 
Sony’s hypervisor. Th e 
PS3 is thus a relatively 
inexpensive source of 
processing power.

Th e Cell (see picture)
is quite diff erent from regular server or desktop processors. 
Taking advantage of it requires new software. It is worth-
while to design software specifically for the Cell, because its 
architecture will soon be mainstream. It not only helps us to 
take advantage of inexpensive Cell processing power, it also 
helps to gear up for future processors.

Th e Cell’s main processing power comes from eight SPUs 
(Synergistic Processing Units). Th ey run independently from 
each other at 3.2GHz, each working on their own 256 kilo-
byte of fast local memory (the Local Store) for instructions and 
data and their own 128 registers of 128 bits each. Th e latter 
allow SIMD (Single Instruction Multiple Data) operations 
on sixteen 8-bit, eight 16-bit, or four 32-bit integers. Th ere 
are many boolean operations, but integer multiplication is 
limited to several 4-way SIMD 16×16 → 32-bit multipliers 
including a multiply-and-add. Th ere is no 32×32 → 64-bit or 
64×64 → 128-bit multiplier. Th e SPU has an odd and even 
pipeline: per clock cycle it can dispatch one odd and one even 
instruction. Because the SPU lacks smart branch prediction, 
branching is best avoided (as usual in SIMD). Th e Cell also 
has a PPE (Power Processing Element), a dual-threaded 64-bit 
processor with 128-bit AltiVec/VMX SIMD unit.

When running Linux, six SPUs can be used (one is 
disabled, and one is reserved by the hypervisor). For some 
applications a Cell can be as powerful as twelve 64-bit proc-
essors or twice that many 32-bit ones. Sometimes we get 
more, sometimes less - but most of the time, even if integer 
multiplications are important, we get a lot.

SLICING AND DICING ON THE SPU
We mostly looked at applications that can be run on 

any number of SPUs in parallel, on each individual SPU 
independent of the PPE or other SPUs, without inter-SPU 
communication, and without large memory demands. We 
have not tried hard yet to synchronize two or more SPUs 
for a single task. Per PS3 this would be doable, and could 
be efficient, if memory demands are low (i.e., probably not 
for NFS-sieving).

Our performance measure is overall throughput. Latency 
per process is mostly irrelevant. Given our applications’ paral-
lelizability over any number of SPUs, it may thus pay off  to 
run several processes in parallel per SPU. While doing so, we 
may exploit the SIMD architecture by sharing instructions 
among processes. And we may interleave multiple SIMD 
processes, filling both pipelines to increase throughput, 
while possibly increasing per-process latency. It depends on 
the application and memory and code-size demands how 

Number crunching on clusters at EPFL
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DISCRETE LOGARITHMS

Looking at 2x mod 11 for x=0,1,2,…,9 we find that for each y with 1 ≤ y < 11 there is a unique x with 2x ≡ 
y mod 11:

20 ≡ 1 mod 11,  21 ≡ 2 mod 11,  22 ≡ 4 mod 11,  23 ≡ 8 mod 11,  24 ≡ 5 mod 11,
25 ≡ 10 mod 11,  26 ≡ 9 mod 11,  27 ≡ 7 mod 11,  28 ≡ 3 mod 11,  29 ≡ 6 mod 11

(and 210 ≡ 1 mod 11). Th e integer 2 is said to generate the multiplicative group of integers modulo 11: <2> =(Z/11Z)*. 
If y ≡ 2x mod 11, then x is the discrete logarithm of y with respect to 2 in (Z/11Z)*.

Th e element 3 of (Z/11Z)* generates an order 5 subgroup of (Z/11Z)*:
30 ≡ 1 mod 11,  31 ≡ 3 mod 11,  32 ≡ 9 mod 11,  33 ≡ 5 mod 11,  34 ≡ 4 mod 11,  35 ≡ 1 mod 11.
Given a prime p, a generator g of (Z/pZ)*, and an exponent x, the value y ≡ g x mod p in (Z/pZ)* can quickly 

be calculated using modular exponentiation, even for large p and x. Th e converse calculation, to find x such that 
y ≡ g x mod p if p, g, and y are given is the discrete logarithm problem. It is believed to be hard for large p. It is also 
believed to be hard in sufficiently large prime order subgroups of (Z/pZ)*.

Th e asymmetry in difficulty between modular exponentiation and its converse, is similar to the asymmetry 
between integer multiplication and factoring. Just as the latter underlies the RSA cryptosystem, the former 
underlies discrete logarithm based cryptosystems. Due to NFS-like discrete logarithm methods, the prime p in 
(Z/pZ)* would have to be as large as an RSA modulus to get the same level of security. Other methods may apply 
as well, depending on the order of the (sub)group used.

THE BIRTHDAY PARADOX

How many diff erent people must be picked at random to get a more than 50% chance that two have the 
same birthday? It follows from a simple calculation that the answer is 23. Th is is called the birthday paradox, not 
because it is a paradox, but because 23 is much lower than intuition seems to suggest.

If random objects are selected with replacement from N objects, one may expect √π–N—/2— rounds before an 
object is picked twice. Th is relatively high chance to find a duplicate has many applications: in the search for hash 
collisions, in Pollard’s rho for integer factoring, and Pollard’s rho for discrete logarithms.

POLLARD’S RHO METHOD TO COMPUTE DISCRETE LOGARITHMS

Let g generate an order q group G, and let y be an element of G. To find the discrete logarithm of y with 
respect to g, i.e., an integer x such that g x=y , Pollard’s rho looks at g ry s in G for random pairs (r,s) of integers. 
Because of the birthday paradox, after √π–q–/2— pairs a duplicate may be expected: pairs (r,s) and (u,v) such that 
g ry s=g uy v. Unless v ≡ s mod q, this leads to .

Th is is implemented by simulating a random walk in G. Take a small integer t (say, 15 or 20) and partition 
G in t parts G1, G2, …, Gt of about equal size, such that it can quickly be decided to which part an arbitrary ele-
ment of G belongs. For i=1,2, …, t pick integers (r i, s i  )  at random and calculate p i=g riy s i in G. Define the start 
point w0 of the random walk as a random power of g. Given w j,  the walk’s next point w j+1 is p iw j,  where i is the 
unique integer such that w j belongs to Gi. Note that it is easy to keep track of the pair (r,s) such that w j=g ry s.

Th is is not a random walk, but close enough. To find duplicate points, use Floyd’s cycle finding trick: compute 
(w k,w 2k )  for k=1,2,3, … until w k=w 2k. On average this happens at k ≈ √π–q–/2— .

PARALLELIZED POLLARD RHO WITH DISTINGUISHED POINTS

To parallelize Pollard’s rho, diff erent processes must be able to efficiently recognize if their walks hit the same 
point. To achieve this, each process generates a single random walk, each from a diff erent random starting point, 
but all using the same partition of G and the same p i for i=1,2, …,t. As soon as the walk hits upon a distinguished 
point, this point (along with its r and s) is reported to a central location, and the process starts a new walk from a 
new random starting point. A point is distinguished if a normalized representation of it has an easy to recognize 
property. Th is could be that l specific bits are zero, in which case walks may have average length 2l (the choice 
depends on q, G, available disk space, etc.). 

Th e idea is that if two walks collide – without noticing it – they will both ultimately reach the same distin-
guished point. Th is will be noticed after the points have been reported.

ELLIPTIC CURVE GROUPS

Elliptic curve groups are other groups where exponentiation (commonly referred to as scalar multiplication in 
elliptic curve context) is easy, and computing discrete logarithms is believed to be hard. No NFS-like tricks seem 
to apply. Th e parameters may therefore be chosen much smaller to reach adequate security. In practice they use 
prime fields or binary extension fields. Th e details are rather complicated. 

Th e fastest method published to solve ECDLP is Pollard’s rho with distinguished points.
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many processes can profitably be squeezed together. Th e 
examples given below were run on LACAL’s cluster of more 
than 215 PS3s (see picture), i.e., about 1300 SPUs.

Below i interleaved j-way SIMD processes on a single 
SPU is denoted by i× j .  If that is done sequentially N>1 
times on the same SPU, we write N×(i× j), for a total number 
of N×i× j  diff erent and more or less simultaneous processes 
on a single SPU.
1×1: non-interleaved single. For applications where per-

process latency must be minimized, it may be best to 
run a single process per SPU. If multi-precision integer 
arithmetic is needed, one could use IBM’s off -the-shelf 
MPM library. Experiments with it did not meet our 
expectations. Our own modular arithmetic with integers 
up to 2048 bits outperforms unrolled MPM by a factor 
of at least two (the regular version by a bigger factor). 
Below parallelized approaches to multi-precision integer 
arithmetic are sketched. Per process they may be slower, 
but their throughput is better.

1×4: non-interleaved 4-way SIMD. We want to factor 
several numbers of the form 2 b–1, where b is an integer 
around 1200. Th is can be done with SNFS (cf. Section 
INTEGER FACTORIZATION) at a huge eff ort per number. 
SNFS can be avoided if the number has small prime 
factors, because they can be found relatively quickly 
using ECM (the Elliptic Curve Method for integer fac-
torization).

 If we want to be reasonably confident to find factors of 
up to 65 digits, we must run 50 thousand ECM trials 
per number. Given a unique initial value per trial, each 
trial performs the same sequence of operations. We used 
4-way SIMD integer arithmetic to process four trials si-
multaneously per SPU. Th is means that each variable oc-
curs four times, with four values on which 4-way SIMD 
operations are carried out. When the values have b bits, 
each 128-bit register contributes at most 128/4=32 bits 
to each of the b-bit values.

 For our range of b’s, 4-way SIMD b×b  → 2b-bit mul-
tiplication is split, using Karatsuba, into 4-way SIMD 
320×320 → 640-bit schoolbook multiplies. As this 
just fits in the SPU’s 128 registers, there is no space to 
interleave multiple 4-way SIMD streams. Further opti-

mizations or diff erent approaches may change this. Th e 
modular reduction takes advantage of the special form 
of 2 b–1. 

 Th e first phase (with bound 3 billion) of four SIMD 
ECM trials takes about two days per SPU. With 1300 
SPUs we need about three weeks for each 2 b–1 to process 
the first phase of 50 thousand ECM trials. Th e second 
phases will be done on regular clusters. Th is experiment 
started in September 2009. No factors have been found 
yet. For those 2 b–1 which fail to factor using ECM, we 
plan a new SNFS experiment. Th e 2 b–1’s are not RSA 
moduli, but the resulting insights will be relevant for 
NFS and RSA moduli as well.

2×4: doubly interleaved 4-way SIMD. Cryptographic hash-
es are very diff erent from RSA and ECC. Th ey are used 
to fingerprint documents. Th us, it should be infeasible to 
find collisions: diff erent documents with the same hash. In 
August 2004 collisions were published for the widely used 
hash function MD5. Th at this poses a practical threat was 
shown four years later with the proof-of-concept creation 
of a rogue Certification Authority certificate3.

 Th is was mostly done on the PS3 cluster. MD5 works 
on 32-bit values, so four MD5 hashes can be calculated 
simultaneously in 4-way SIMD mode. Two of such 
SIMD streams were interleaved. Taking advantage of the 
instruction set of the SPU, our 1300 SPUs performed as 
efficiently as eight thousand regular 32-bit cores.

50×(2×4): multiple doubly interleaved 4-way SIMD. We 
implemented Pollard’s rho to compute a discrete loga-
rithm in a 112-bit prime field elliptic curve group. Th e 
multi-precision integer arithmetic required for four ran-
dom walks with distinguished points was implemented 
in the same 4-way SIMD fashion as used for the 2 b–1 
ECM-application. But because the numbers here are 
much smaller, two 4-way SIMD walks were interleaved 
for added efficiency. Furthermore, this already 8-fold 
parallelism per SPU is further blown up by a factor 50 
(by running it sequentially 50 times on the same SPU) 
for the following reason. To recognize distinguished 
points, each point on each walk must be normalized. 
Normalization in elliptic curve groups is not branch-
free and not sympathetic to SIMD. Doing it for all 
50×2×4 points would be too costly. At the cost of three 
additional 112-bit modular multiplications per walk, the 
normalizations were combined into a single one and the 
result divided again over the diff erent walks. Per walk 
the high normalization cost is thus replaced by 1/400th 
of it plus three 112-bit modular multiplications. Th e 50 
was the largest value for which all data would fit in the 
SPU’s Local Store.

 On 1300 SPUs this resulted in more than half a million 
parallel walks. Using increasingly efficient implementa-
tions it took half a year to find the desired result4. It is 
the current ECDLP record. With the latest version it 
would have taken three months and a half. More than 
half a billion distinguished points were generated with 
24-bit distinguishing property. Th eir storage required 
0.6 Terabytes of disk space. ECDLPs underlying prime 

3 See www.win.tue.nl/hashclash/rogue-ca/.
4 See lacal.epfl.ch/page81774.html.

Number crunching on clusters at EPFL



FI 8 – 27 octobre 2009 – page 20

field ECC systems used in practice are about 20 million 
times harder to solve.

128×(2×1): multiple doubly interleaved single. We also im-
plemented Pollard’s rho to compute discrete logarithms 
in a 131-bit binary extension field elliptic curve group. 
Two 128-bit registers were used to represent a 131-bit 
value. Two walks were interleaved, and this was done 
sequentially 128 times per SPU to amortize the point-
normalization cost. Th is resulted in 1/3 million parallel 
walks on 1300 SPUs. With a distinguished point prob-
ability of 2–35.4 and overall 260.9 steps, 225.5 distinguished 
points are needed. After one week 43’818 were found. 
Th is implies that the overall calculation can be expected 
to take 21 years on a cluster of 215 PS3s, or four and a 
half thousand years on a single PS3. If many others chip 
in, also using regular clusters, the calculation may be just 
about doable. ECDLPs underlying binary extension field 
ECC systems used in practice are about 20 thousand 
times harder to solve.

1×16: non-interleaved 16-way SIMD. A block cipher uses 
a key to encrypt a block, resulting again in a block. Block 
ciphers are used for high volume encryptions. AES (Ad-
vanced Encryption Standard) is the current standard block 
cipher. It uses keys of 128, 192, or 256 bits and blocks 
are 128-bit values.

 We implemented AES byte sliced on the SPU, without fur-
ther interleaving. In 3000 cycles an SPU simultaneously 
encrypts 16 blocks in SIMD fashion, all with the same 
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128-bit key. Th at is 11.7 cycles per byte. For decryption 
we get 14.4 cycles per byte. For batch encryption (de-
cryption) with a single 128-bit key the SPU thus achieves 
2.2 (1.8) Gigabit per second: in principle, a single PS3 
can encrypt (decrypt) 1.65 (1.35) Gigabytes per second, 
using 6×16=96 parallel streams. For other key sizes the 
performance is similar.

1×128: non-interleaved 128-way SIMD. DES (Data 
Encryption Standard) is a block cipher with 56-bit keys 
and 64-bit blocks. Standardized in 1976, it is no longer 
considered secure. It was officially withdrawn in 2005, 
after the introduction of AES. It is still widely used and 
key search for DES is still relevant.

 We designed a bit sliced DES-implementation for the 
SPU. It processes 128 keys in SIMD fashion, without 
further interleaving. Using 6 SPUs on a single PS3, a 
known plaintext DES key search should take, on average, 
640 days. On the full cluster it becomes three days on 
average, and less than a week in the worst case.
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IL Y A 20 ANS DANS LE FI
Dans le numéro du 19 décembre 1989, l’EPFL s’enorgueillissait d’avoir atteint un record de vitesse de calcul:
[…]
L’EPFL GAGNE LE CRAY GIGAFLOP PERFORMANCE AWARD
Un groupe de chercheurs du Centre de Recherches en Physique des Plasmas (CRPP) de l’EPFL a gagné le concours 
international Cray Gigaflop Performance Award en exécutant leur programme TERPSICHORE sur un Cray-YMP à 
huit processeurs. Les physiciens David V. Anderson, W. Antony Cooper, Ralf Gruber et Ulrich H. Schwenn ont atteint 
une puissance de calcul moyenne de 1,708 Gigaflop/s (un Gigaflop/s correspond à un milliard d’opérations à virgules 
flottantes par seconde).
Au total vingt programmes arrivant à plus d’un Gigaflop/s ont été soumis à ce concours. Le programme, obtenant le 
deuxième meilleur score était une contribution de NASA Langley qui a atteint 1,586 Gigaflop/s.
TERPSICHORE est utilisé pour étudier la stabilité d’un gaz ionisé très chaud confiné par des champs magnétiques tel que 
cela se réalise dans les expériences de fusion nucléaire. Ce programme tourne sur le superordinateur Cray-2 de l’EPFL.
[…]
Le Cray-2 est également utilisé pour des applications industrielles telles que la simulation de la phase réentrante de la 

navette européenne HERMES.


